List Headline Image
Updated by Norm Grimberg on Feb 25, 2021
 REPORT
2 items   1 followers   1 votes   3 views

Tool Wear During CNC Machining: Types and How to Avoid Them

The introduction of CNC machining has revolutionized the way our industry processes goods.

Types and How to Avoid Them

The dependency on human labor has been reduced to half, with computers taking their place. As a result, we are able to witness an increased efficiency, improved product quality and the ability to produce almost everything with exact precision- 3D, 4D or 5D.

But then again, it’s a computer system directing actual ‘cnc machines’ to perform a task. Tool wear is as common as it gets. It may experience a breakdown or failure after working for an extended period of time. In fact, every cutting tool will experience wear at some point in its production life.
While it might be common, excessive wearing is not good for our product or machine. The inconsistencies caused by such wears and tears may have unwanted effects on your workpiece and may do damages to the primary piece of equipment. Its failure might even lead to irreplaceable damages such as rework, a collection of scrapped parts, or a total breakdown which might cost us more than the product itself.

Thus, it’s pretty important to find out such abnormalities and correct them in real-time so we get optimal end mill performance. Here’s our take on the various types of tool wear, and how to identify and mitigate them, complied with our experience. Hope they will help you manage tool wear better!

Abrasive Wear

Mechanical stress is one of the major causes of a tool wear with thermal taking a close second place.

Abrasion, especially the wear land abrasion, is pretty common amongst cutting tools. It is caused by the uniform abrasion on the cutting edge of the tool, dulling the edge as a result. If severe like added thermal stress at higher speeds, it can even alter dimensions of the tool edge.This is why a tool coating is of utmost importance for tool longevity.

How to Avoid
If you start witnessing a certain abrasion pattern on your tool’s edges, it’s time for you to reduce the cutting speed and optimize coolant usage, especially when working with this particular tool. Even High-Efficiency Milling (HEM) tool paths can be used to reduce wear by distributing the work done across the entire length of the cut. This helps focused abrasion while contributing to the longevity of the tool life.

Thermal Cracking
Thermal cracks are caused by temperature fluctuations during a milling process. They are identified as a series of cracks on the tool’s surface perpendicular to the cutting edge. Such cracks form over a long period of time and are often the most difficult to deal with once present.

How to Avoid
One of the best ways to divert thermal cracking is to add a proper heat-resistant coating to the end mill. Similar to abrasion wear, HEM tool paths can also be utilized for an even distribution of the head across the tool, thus reducing the heat on a certain area.

Read More: http://mdaltd.ca/tool-wear-during-cnc-machining/

Pick Your Right Tool: Ideal Milling Tools To Use For CNC Cutting - MdaLtd.ca

CNC milling tools are a boon for CNC machinists. Various types of CNC milling tools allow for the customization of the final products. Choosing the right CNC milling tool is a necessary part of the manufacturing process. Machinists have plenty of tools to choose from, and every tool provides different results.

The article is intended for milling operators who can set up and run a milling machine. It will help the machinists to identify ideal milling tools available for CNC cutting and the CNC milling tool materials. And before, choosing the milling tool, it is important to know the materials used in the milling tools.